The Crystal and Molecular Structure of *cis*-Dichloro[(*R*)-α-methylbenzylamine]-[(*S*)-1,2,2-trimethylpropyl (*R*)-vinyl ether|platinum(II)

By FRANCO SARTORI AND LEONARDO LEONI Istituto di Mineralogia dell'Università di Pisa, Italy

(Received 10 April 1975; accepted 19 May 1975)

The crystal and molecular structure of the title compound has been determined by single-crystal threedimensional X-ray analysis. The crystals belong to the orthorhombic system, space group $P_{2_12_12_1}$, with $a=25\cdot56(3)$, $b=11\cdot37(1)$, $c=6\cdot84(1)$ Å, Z=4. The structure, solved by standard methods, has been refined by full-matrix least-squares methods to a final conventional R index of 0.069, by use of 1764 independent reflexions collected by the Weissenberg method with Cu K α radiation. Chemical knowledge of the absolute configuration of the amine and vinyl ether indicated the absolute configuration of the whole molecule. The platinum atom has a square-planar configuration, but its principal coordination plane does not bisect the olefinic double bond, the midpoint of such a bond lying 0.38 Å above this plane. Furthermore the double bond is slightly displaced from the perpendicular to the coordination plane. While the molecules are held together only by van der Waals interactions, a hydrogen bond, which could play an important role in determining the conformation of the coordinated vinyl ether, links the nitrogen of the amine group and the oxygen atom.

Introduction

The current interest in olefin-platinum complexes with optically active ligands stems largely from their utility in the study of stereospecific coordination phenomena.

After the solution, in our laboratory, of the structure of the trans-dichloro(benzylamine)[(2R, 3S)3-methyl-1pentene]platinum(II) complex (Merlino, Lazzaroni & Montagnoli, 1971), we undertook the investigation of the crystal and molecular structure of cis-dichloro- $[(R)-\alpha$ -methylbenzylamine] [(S)-1,2,2-trimethylpropylvinyl ether]platinum(II), for which also two diastereoisomers are possible. The n.m.r. spectra however gave evidence of the formation in the crystallization of only one of them, which probably represents the more stable one at least in the solid state. The purpose of this research was to establish its absolute configuration; the chemical knowledge of the configuration of two asymmetric groupings present in the molecule, besides the olefin asymmetric centre, made this determination possible (Mathieson, 1956).

Information about the conformation of the molecule in the solid state was briefly reported in a preliminary communication (Sartori, Leoni, Lazzaroni & Salvadori, 1974); the results of the full crystal structure investigation and refinement of the compound are reported here.

Experimental

As previously reported (Sartori *et al.*, 1974), the compound was prepared by displacement of ethylene with (S)-1,2,2-trimethylpropyl vinyl ether from the corresponding ethylene–Pt(II) complex. Beautiful air-stable yellow crystals were grown from solution in a mixture of acetone, diethyl ether and pentane (1:1:2). Most of them were blade-shaped, platy normal to **a**. From Weissenberg and precession photographs the space

group was determined as $P2_12_12_1$. The lattice constants were derived from least-squares refinement of powder diffraction data: $a = 25.56 \pm 0.03$, $b = 11.37 \pm 0.01$, c = 6.84 ± 0.01 Å; V = 1988 Å³. The formula weight is 515.4 ($C_{16}H_{27}NOCl_2Pt$); the density, measured at 20°C by flotation in a concentrated aqueous solution of ferric sulphate, is $D_m = 1.70$ g cm⁻³; the calculated density is $D_c = 1.72$ g cm⁻³ for Z = 4. The linear absorption coefficient for Cu K α radiation ($\lambda = 1.5418$ Å) is $\mu = 159.4$ cm⁻¹. The intensity data were recorded with nickel-filtered Cu Ka radiation by means of Weissenberg photographs, with the multiple-film technique and integration process. Seven layers with c as rotation axis (l=0 to 6) were recorded and 2294 independent reflexions (1764 observed) were collected. The intensities, measured with a Nonius microdensitometer, have been corrected for Lorentz and polarization factors and for incipient but incomplete $\alpha_1 - \alpha_2$ spot doubling. The absorption correction was performed by computing the transmission factors by means of a program (Alberti, 1968) based on the Monte Carlo method proposed by Alberti & Gottardi (1966) for crystals of any shape and absorption; for this purpose the dimensions of the crystal used for intensity data collection (a small parallelepiped $0.09 \times 0.16 \times 0.44$ mm in size, cleaved from a larger plate) were carefully measured under a microscope with a micrometer evepiece and its faces were identified. For this crystal and for the linear absorption coefficient of the compound the transmission coefficients were found to range from 0.11 to 0.35.

Determination and refinement of the structure

The position of the platinum atom was readily located from a three-dimensional Patterson synthesis. After a cycle of least-squares refinement of the Pt coordinates

Table 1. Observed and calculated structure factors

Columns within each group contain the values h, 10 F_o , 10 $|F_c|$ and α (expressed in millicycles). Six reflexions, which are probably strongly affected by secondary extinction, are marked with an asterisk.

6.0.0 0 01ct 151t 5	16 10 JV 448 500 18 800 503 509 20 915 218 100 24 418 357 8	• 1416 1787 202 10 1112 1176 130 11 1272 1230 144 12 874 864 182	12 312 241 500 13 243 244 157 14 242 234 436 15 246 241 855	20 343 39, 430 23 275 240 415 midic	21 JUZ .01 752 22 JOB JJS 3 23 203 216 703 24 102 J21 950		23 243 263 178 24 143 143 96 25 177 141 123		J 445 434 417 4 445 401 /74 6 548 577 441	12 320 321 024 13 741 774 12 14 242 210 774	17 Jad 3rt 500 1- Jad 43, 500 21 376 366 580
4 571 675 0 a 636 663 500 10 1265 1157 500 12 1763 1966 500	20 204 355 0 20 204 355 0 H.T.D	13 503 502 V0 14 515 477 764 15 377 372 884 16 443 447 875	10 350 344 13 17 501 440 740 10 371 307 14 14 320 311 777	0 302 300 0 1 1300 1302 220 2 300 020 071 4 700 774 175		5 877 740 45 6 525 483 100 7 1037 1008 41 8 576 547 793	L	2 504 506 648 3 1180 1274 834 6 881 992 763 5 994 942 876	0 617 305 210 - 457 611 146 10 649 659 196 11 557 510 100	17 400 474 10 18 230 207 30 19 235 279 15 19 236 279 15	
16 939 931 500 18 265 46 500 22 367 243 0	1 318 244 250 2 744 737 0 3 754 747 250 4 1600 1014 0	10 315 4v3 451 1v 705 014 700 20 637 5v4 466 21 712 708 769	21 484 434 735 22 384 354 39 23 374 380 751 24 374 380 751	6 990 V62 884 5 312 276 848 6 930 836 819 7 354 315 51	1 1.17 1.231 247 2 0.24 000 047 3 0.54 002 742 0 013 014 732	v v0v v16 164 10 620 563 904 11 557 508 894 12 697 668 978	1 447 J75 18. 2 817 643 46 3 447 J91 44 4 674 623 55	6 1147 1134 744 7 734 731 474 4 741 745 247 4 355 494 57	12 314 306 334 13 436 441 246 13 375 415 763 17 244 245 467	22 140 203 V76 23 152 151 961 25 177 232 VVV	1 031 110 0 2 002 007 229 3 570 622 20 5 205 017 213
26 698 726 0 26 556 526 0 30 360 .46 0 32 173 136 0	5 036 825 250 0 373 1060 0 7 010 932 250 0 1013 1047 0	22 301 372 02 23 004 503 752 24 246 276 01 25 150 324 247	25 211 100 231 Himi	0 VID 000 704 V 6V2 4V1 247 10 346 670 76 11 1404 1346 227	5 627 187 101 8 565 226 794 8 568 214 756 7 676 677 210	13 300 327 925 14 855 777 988 15 350 287 130 15 350 287 130	5 677 617 17 7 722 689 664 8 323 288 860 8 418 418 663	10 /10 784 205 41 405 355 173 12 330 351 124 13 347 338 246	14 .46 JJ[4] J 20 243 312 767 42 174 206 763	" 0 040 510 500 1 313 332 417	5 J50 J57 444 + J71 237 487 15 J44 244 884
H.1.0 1 JJA 271 230	0 00 1011 250 10 000 230 0 11 050 567 250 12 338 402 3	31 140 157 758 32 125 141 14	0 1310 3250 0 1 400 474 240 2 1104 1111 441 3 526 503 170	12 745 467 52 13 1942 1560 220 14 534 537 35 15 1247 1350 234	11 040 173 223 12 340 253 4 13 635 255 320 15 340 157 756	17 444 445 85 18 542 447 104 14 507 504 104 20 244 246 203	10 085 552 936 11 324 292 638 12 743 715 173 14 617 673 2	14 317 313 412 15 456 414 817 16 443 401 827 17 416 404 850		2 348 458 645 3 748 640 455 4 644 467 867 5 416 836 904	11 512 653 676 14 315 265 777 13 561 536 666 16 346 356 788
2 1077 1201 0 3 1200 1310 250 6 2017 4075 0 5 1101 1106 450	15 444 462 750 16 456 469 500 17 611 613 756 18 566 560 500	0 2672 2766 0 1 1271 1275 800 2 2433 2552 2	• • • • • • • • • • • • • • • • • • •	10 385 000 vel 17 777 724 708 18 403 426 8-8 19 345 614 614	10 202 201 820 17 370 371 740 10 475 270 700 20 403 256 770	21 030 030 30 22 282 226 864 23 264 330 163 24 276 278 420	16 445 445 16 17 363 323 80 16 244 221 35 14 247 366 53	10 594 555 813 10 208 257 944 20 452 533 600 21 286 263 75	3 341 340 820 4 685 850 747 5 381 344 743 6 704 171 740	• •52 377 •2• 7 •25 •1• 21 • 527 •90 210 • 7•• 711 37	15 403 450 12 15 240 288 760 17 400 312 13 10 101 147 01
6 1842 1747 0 7 864 432 250 8 1127 1231 0 4 468 1005 200	10 652 602 750 20 567 527 500 21 639 622 710 22 689 650 500	J 1549 1822 755 4 1094 1159 473 5 864 432 153 6 282 377 215	2 200 231 v10 v 023 000 967 10 021 017 23 11 350 300 002	20 392 300 705 21 212 101 045 22 295 303 105 23 270 225 173	22 150 201 217 23 206 260 251 25 236 261 212	25 177 185 860 26 274 308 966 26 266 265 997 29 183 187 176	21 270 314 30 22 212 211 527 23 193 200 662 24 180 214 537	22 125 167 762 23 202 255 132 24 165 171 173 25 182 211 218	9 405 385 147 10 346 350 243 11 246 40 103	11 310 817 85 12 370 363 163 13 211 340 273	
10 1156 1245 0 11 007 000 250 12 763 841 3 13 337 277 250	20 JOS JOS 103 100 20 100 134 500	7 538 535 180 8 421 806 974 9 767 784 833 10 3212 1240 38	12 802 777 999 13 313 297 751 16 837 800 983 15 327 296 176	25 336 366 176 27 303 330 311 28 107 136 16	4 444 444 444 444 444 444 444 444 444			×, 3.4	14 302 431 702 16 316 331 700 16 173 100 022 17 173 210 750	15 277 262 803 36 207 203 003 37 230 260 036 38 230 260 036	1 163 113 261 2 266 626 652 3 276 201 665 6 614 626 800
18 436 401 300 17 454 368 753 18 634 542 300 19 610 573 750	1 407 970 150 2 311 267 500 3 624 815 750	12 1200 1247 998 13 923 906 765 14 1530 1518 966 15 032 061 709	1/ 247 274 155 10 356 357 44 14 201 207 83 24 216 233 467	M.J.2	3 448 689 741 4 349 224 836 5 647 818 763 7 867 818 763	1 1230 1311 000 2 1000 1027 41 3 1147 1424 072 4 1174 1229 33	3 351 324 51 4 428 448 32 6 546 506 5 8 626 627 483	1 313 206 q10 2 945 avy 246 3 726 603 778 4 656 546 241	4.10.4 0 22 234 300	10 301 303 050 20 205 210 700 21 306 342 405 24 100 200 213	5 410 300 36 5 842 626 752 7 462 448 35 5 870 374 223
20 7v6 700 500 21 469 433 750 22 945 4:5 500 23 314 277 750	+ 356 313 500 5 247 248 750 5 247 248 750 6 245 348 0 7 273 305 250	10 1057 1006 976 17 401 450 225 18 586 587 997 19 419 383 65	26 301 244 472 H.9.3	1 744 761 754 2 1148 1132 740 3 1241 1288 238 4 417 711 775	V 667 672 755 11 3v3 3v6 219 12 34v 236 189 17 363 316 763	- 448 374 20 - 1414 1458 36 - 1414 1458 36 - 448 374 20	10 400 478 668 10 400 478 668 11 344 637 666 12 307 283 656	5 1033 924 247 6 202 211 2.5 7 1055 944 220 8 207 147 837	4 5 W 101 144 7 920 154 110 7 920 154 110 1 941 945 146	23 105 230 25 24 107 172 131 H.5.5	0 100 424 80 13 343 427 202 31 362 318 144 12 271 344 141
24 572 508 503 25 228 203 750 26 249 274 503 31 156 136 250	10 421 372 0 11 824 791 210 12 3v3 357 0 13 1045 1840 250	21 233 220 001 22 214 230 400 23 240 232 777 20 414 425 566	2 507 508 1 3 308 344 46 6 463 649 6 5 432 362 72	5 1804 1870 248 6 276 204 185 7 1947 1918 241 8 567 508 789	10 1/2 164 817 14 354 388 757 21 343 373 247 23 471 486 322	10 10.5 1101 21 11 642 605 400 12 511 244 47 13 820 743 400	13 402 433 12 16 210 200 41 17 247 317 37	10 677 622 752 11 516 651 201 12 207 405 201	6 316 200 755 7 300 317 002 6 .70 320 827	0 051 805 750 1 414 Jan Ja 2 673 761 214	15 207 250 817 15 207 250 817 16 276 270 779 27 216 344 616
32 200 210 0 m.2.0	10 500 420 0 15 650 620 210 16 600 415 0 17 500 340 230	25 277 200 003 26 504 436 416 27 244 247 708 28 407 341 476	7 J67 252 V5 4 1044 1067 2 4 213 215 164	10 607 601 245 11 452 1013 776 12 626 626 266	1 C . 2 0 740 722 0	10 514 224 427 10 501 556 474 10 530 514 473 17 372 352 441	10 203 302 11 14 136 177 74 20 311 327 14 22 231 230 31	15 243 2 5 831 15 613 148 247 17 338 345 777	10 330 341 472 11 290 337 6.4 12 277 Ke v23	+ 350 496 214 5 563 501 133 7 525 442 143	12 215 254 537 24 325 312 239 21 123 117 642
1 2242 2440 750 2 1503 1633 500 3 3224 3466 750	19 314 299 220 25 272 248 750 27 303 260 750		11 100 142 220 12 357 317 970 10 367 365 2 17 417 107 303	45 546 460 193 16 464 466 776 17 760 640 243	2 ev7 c55 57 3 5e6 609 211 6 656 668 115	20 618 546 472 22 573 563 484 23 514 240 446 24 245 261 475	**************************************	10 441 441 757 21 421 404 230 23 240 220 210 44 213 214 247	10 210 200 470 15 140 203 210 10 187 200 03	v 300 376 200 10 643 630 803 12 631 646 783 14 618 661 230	J.4 0 10 10 10 10 10
5 1046 1225 750 5 315 218 500 7 403 780 750 8 977 1044 0	n,4,0 1 316 271 710 2 612 306 0	1 000 461 175 2 1706 1568 403 3 414 676 60 4 1771 1712 457	14 526 515 11 20 537 503 16 22 404 373 2 24 253 235 493	10 701 742 771 21 744 770 776 23 536 555 739 25 1.43 144 754	 311 375 200 7 300 310 30 8 420 381 207 9 370 352 507 	25 281 204 482 27 260 267 474 24 552 145 487	2 400 443 552 3 Ja? 363 655 4 454 413 645 5 Jav 380 454	26 206 241 244 26 166 100 230	id 134 146 135 4.11.4	10 000 001 224 10 205 253 212 21 107 100 772 22 100 100 029	1 247 224 13 2 426 822 764 4 444 176 776 4 235 224 830
9 687 640 250 10 1216 1306 9 11 1255 1346 250 12 936 845 0	J 740 775 720 7 1107 1214 750 9 464 467 750 11 567 507 750	5 300 341 107 6 1420 4116 440 7 540 461 440 8 1616 1434 1	Heldel	20 220 231 231 20 141 100 201 20 147 133 776	10 273 276 863 11 240 336 761 12 026 036 960 13 330 338 203	0 1003 vie 0 1 1016 1013 vie	6 327 314 4CC 7 4D5 403 24 8 264 283 178 9 340 356 95	0 977 408 500 1 650 573 769 2 491 875 80	1 530 407 442 1 116 356 403 4 216 205 402 2 208 203 440	23 128 143 013 24 136 211 775 M48-3	7 250 211 750 10 007 000 233 12 500 107 751 10 010 505 700
10 1002 1420 250 10 155 417 0 15 1196 1255 250 16 737 665 0	17 606 643 250 21 510 466 230 23 372 313 230	10 1218 1282 607 11 637 576 916 12 693 676 916	2 626 602 084 3 567 670 743 5 247 283 866	0 303 507 0 1 1703 1007 235	15 320 353 216 16 325 232 46 17 255 274 152	3 1003 V/6 444 4 V03 423 5VV 5 457 742 V20	11 350 376 169 12 394 413 22 13 354 361 211	5 1062 VV6 1/6 5 1062 VV6 1/6 5 100 442 101 6 1065 VV1 200	• 2+3 241 10 • 213 234 40 11 241 316 30	1 30) 405 707 2 201 256 703 3 413 343 244	10 000 032 770 10 211 247 790
16 350 323 0 21 560 666 750 23 650 636 750 24 246 217 500		15 557 525 68 16 570 540 52 17 370 370 44	0 251 223 155 0 305 250 134 10 403 371 15	3 1010 077 201 0 007 000 00 5 1205 1100 130 0 037 072 003		7 766 616 475 = 617 606 217 + 613 751 96 10 564 502 75	15 274 254 780 16 306 314 C4 17 144 201 670 18 277 243 677	6 795 783 233 9 553 441 425 10 726 711 802 11 504 508 749	13 140 247 20	a 615 664 762 a 770 765 766 10 554 641 760	0 176 120 500 1 May 272 167 2 Jul 376 706
25 530 441 750 24 244 242 500 27 591 448 750 24 256 241 500	1 300 120 210 2 316 436 300 3 545 434 250 4 333 403 300	20 eVV e63 36 22 e02 731 23 24 545 53V 22 30 1e0 137 5e6	12 430 426 V 13 400 473 765 14 404 437 15 15 403 408 748	7 426 766 25 6 647 469 903 9 679 635 459 10 1077 956 934	• 516 100 947 • 510 563 465 10 446 648 953 15 224 218 586	11 736 606 173 12 820 700 13 13 868 623 224 14 363 3451000	10 100 100 100 20 130 100 773	12 455 436 874 13 566 547 100 14 344 321 77 15 422 409 234	0 224 201 0 2 216 267 475 3 157 160 11	12 283 246 750 13 316 297 762 15 257 246 795 16 214 215 223	4 604 537 747 5 547 617 77 6 646 624 762 7 415 376 946
20 414 374 750 20 162 113 500 31 265 213 750	5 243 214 250 8 262 263 8 4 274 228 750 10 440 373 0	*****	16 373 373 486 17 230 207 036 10 266 236 451	13 896 795 776 12 1020 972 956 13 903 863 262 16 787 776 978	10 227 227 580 20 241 302 564 441 442	15 471 403 000 10 510 540 450 17 434 434 404 18 530 542 882	0 113 132 250 2 205 200 751 3 130 316 211	10 337 320 207 17 418 408 173 18 446 433 236 19 326 348 109	4 177 284 426 3 284 277 23 7 241 338 22 4 246 273 40	10 200 300 225 20 202 350 232 27 208 255 230	• 606 ELC 747 • 374 364 953 18 •74 454 766 11 241 357 407
H.J.0 1 545 647 750 2 655 702 0	11 526 490 750 12 557 495 3 13 632 552 750 14 598 526 0	1 001 020 230 2 1705 1763 603 3 1023 945 764 4 1256 1306 973	4.11.1 3 530 511 771 4 254 259 130	15 446 786 233 16 412 409 34 17 646 636 162 14 506 516 63	0 340 192 340 2 333 158 3 4 330 400 445	20 323 353 824 21 401 345 52 23 372 354 114	5 440 417 231 7 400 614 240 6 146 215 651 9 362 344 552	20 417 402 Tes 21 247 473 40 22 306 339 820 23 165 196 441	10 100 224 44 11 135 167 72 448.5	H.7.5 0 031 744 250 1 014 543 474	14 174 212 766 18 202 257 156 28 315 335 189 14 276 184 1
4 332 278 0 5 1079 1007 730 6 317 201 0 7 2012 2203 750	16 503 428 0 17 456 373 750 18 228 206 0 14 290 231 750	6 726 687 848 6 657 676 114 4 650 636 165 10 1066 1056 24	6 241 281 76 7 756 730 243 8 243 237 28	20 240 264 103 22 313 264 410 23 204 271 746 24 471 232 063	7 258 273 474 9 274 236 28 13 273 250 995 14 396 396 999	45 257 283 100 26 210 235 26 27 164 174 211 28 143 220 444	11 265 257 774 12 304 344 708 14 246 334 701 16 211 264 755	25 130 170 440 26 205 107 962 27 95 136 707	1 301 517 250 2 430 557 750 3 242 340 250 4 920 1034 750	3 848 876 432 4 503 518 876 5 348 317 845 5 348 317 845	21 101 100 942 22 103 201 225
0 J51 47V 0 V 1543 1655 750 10 544 511 0 11 1114 1110 750	#+11.0 2 418 367 360	11 862 850 203 12 1362 1354 11 13 796 830 236 16 1303 1218 995	10 221 214 14 11 337 344 763 17 323 315 240 14 375 362 233	25 240 350 754 20 230 204 431 27 332 314 237 24 239 256 204	14 Jul Jan 3 14 Jul 24 Jul 40	24 112 127 744 Ma5.J	17 130 162 255 10 122 174 222 H+12+3	H.3.4 0 472 433 250 1 1010 446 440	5 173 152 250 6 2244 1203 750 6 1165 1144 750 10 663 664 756	7 316 304 172 0 204 234 30 4 377 340 43 10 244 236 170	0 31 230 750 1 050 376 903 2 243 152 760
13 501 435 750 15 403 374 250 16 259 230 500 17 961 836 250	+ 707 473 500 5 244 259 250 6 850 417 360 7 334 260 250	13 68V 646 230 18 V67 6V6 V36 17 606 663 233 16 680 622 V16	21 241 321 225 Milžil	4.5.2 9-5 6 5 8 9 4 6 9	3 255 247 176 6 221 248 46 5 259 310 231	0 845 858 258 2 911 914 213 3 812 814 813 4 917 815 132 8 917 815 132	1 420 414 254 240 514 514 5 245 516 116 5	2 520 444 83, 3 434 857 442 4 684 546 416 3 637 376 834	11 515 526 750 12 618 363 750 13 624 535 756 14 627 201 650	11 428 427 60 12 346 340 234 13 364 366 36 14 534 366 755	J 657 587 986 6 136 223 518 5 274 285 20 6 232 168 578
10 1041 942 250 21 763 736 250 25 766 401 250	+ J01 261 250 10 531 102 300 11 226 214 260 12 226 223 500	25 254 235 177 26 404 315 947 27 284 240 230 28 45 967	1 000 001 752 3 007 006 207 5 270 277 230 0 273 206 767 11 363 300 762	2 F31 636 912 3 F36 F20 637 6 1340 1375 903	* 25v 311 245 * 25v 311 245 * 200 271 970 * 144 235 773	6 805 808 31 7 1024 1015 776 8 635 585 944 9 602 876 907	6 246 314 245 8 256 240 765 9 304 237 777 10 204 252 756	7 657 668 203 6 727 642 27 6 677 668 75 10 635 606 75	10 525 520 250 17 150 117 750 10 526 500 250	10 200 255 772 17 205 720 v21	• 207 214 65 • 227 214 65 • 214 227 146 • 10 214 227 146
31 194 203 750 H.4.0	16 268 257 0 18 420 358 0 20 395 367 0	20 171 181 763 30 201 141 492 76541	13 601 617 758 15 370 373 753 17 276 283 756	6 1463 1367 936 7 735 653 755 6 1621 1363 16 9 675 579 175	11 120 109 626 12 199 176 020 4.1462	10 505 514 873 11 614 567 872 12 562 406 709 13 560 511 951	11 271 318 246 13 268 321 242 H.13.3	11 001 023 27 12 207 340 14 13 025 052 1 15 000 505 400		0 445 380 0 3 145 212 150 2 849 353 71	13 485 485 13 16 204 246 751 15 331 415 16 16 148 201 774
a 1847 1423 500 1 2213 2342 250 2 1270 1312 500 3 1425 1525 280	H. 12.5 0 514 545 0 2 521 568 0	0 163 174 750 1 440 878 36 2 506 420 35	3 276 205 010 6 257 200 VV2	10 V47 020 60 41 591 544 133 12 644 613 136 13 345 570 44	L 304 371 741 3 243 380 785	14 475 405 233 15 494 473 61 16 533 506 171 17 393 362 144	0 210 220 750 2 101 210 814 4 192 214 515	10 200 200 070 17 005 051 035 10 270 200 020 10 223 200 020	0 525 544 250 684 684 166 1 884 686 616 5	3 423 844 71 4 244 244 120 5 532 523 24 7 531 537 2	17 203 218 15 18 140 152 921
5 507 516 200 6 403 397 500 7 406 365 750 9 824 917 750	8 223 143 500 9 209 182 350 10 403 343 500 11 176 209 750	6 346 341 63 5 1738 1718 216 6 576 561 946 7 1765 1767 233	6 326 331 488 7 346 306 777 8 315 325 999 9 246 300 757	15 3V2 418 454 16 410 356 428 17 400 410 675 18 584 554 477	• 1 1047 1274 750 3 1041 1178 750 4 815 237 256	10 522 487 214 20 272 255 951 21 454 405 229 23 324 315 750	6 234 274 672 7 202 227 209 8 225 251 J 9 186 240 150	22 261 300 Vae 23 164 214 67 24 153 134 30 25 190 224 37	4 471 544 854 5 353 361 815 6 324 311 640 7 446 440 161	10 200 140 874 11 261 268 462 17 163 162 68	3 320 218 560 1 227 218 166 2 257 214 570 3 577 514 670
11 1417 1541 710 12 544 478 0 13 1421 1475 750 14 527 537 0	12 +42 +30 500 13 212 221 750 14 511 475 500 15 170 171 780	0 030 570 942 9 1503 1495 242 10 003 005 600 11 796 795 707	10 237 257 20 11 146 168 204 	14 318 331 746 20 541 604 444 21 262 247 236 22 616 663 33	5 636 620 750 8 1233 1297 230 8 1080 1051 250 9 635 209 250	24 186 212 428 25 181 145 782 26 143 218 742 28 150 186 236	H.0.4	70 112 127 154 M.C.4	0 336 310 518 9 659 540 518 10 546 518 215 31 520 521 106	M.V.S 1 604 705 7	5 446 626 14 7 725 687 2 9 440 504 16 11 240 315 16
13 1052 1046 750 16 432 406 0 17 765 727 750 19 270 257 750	10 273 201 300 10 273 201 300 13.0	12 300 300 736 13 173 100 820 14 200 213 244 13 417 420 700	0 340 440 0 2 325 383 7 4 209 250 11	10 100 101 101 10 100 101 101	10 410 400 250 11 641 523 250 12 340 282 250 13 7,0 666 250		J +J/ 1046 500 6 6/2 761 0 5 1465 17/6 500	1 Jan JJa 847 2 667 635 447 3 755 604 423 4 495 461 36	13 413 400 34 14 730 710 245 15 454 454 475	3 343 543 15 4 276 276 44 5 241 304 27 6 274 277 11 6 224 277 11	15 134 137 453 17 236 272 461 14 245 346 666
24 335 312 500 25 452 434 250 26 372 365 500 27 403 400 250	3 278 272 250 4 319 328 0 5 335 328 250 6 381 407 0	17 702 721 777 18 324 30v 102 19 750 776 772 20 323 341 63	4.0.2 2 1100 1334 500 4 402 887 500	0 1524 1505 500 1 364 266 674 2 1674 1576 463 3 365 522 44	17 616 007 250 16 573 540 250 16 236 220 250 20 362 107 750	2 403 364 154 3 975 920 212 4 muz 771 208 5 532 511 196	7 1427 1441 500 V 482 874 100 10 140 125 500 11 115 150 500	9 419 800 444 7 413 844 440 8 376 314 13 9 416 800 444	17 635 608 919 18 336 361 600 19 291 270 666 20 161 224 690	v 200 221 959 11 372 343 948 13 310 340 1 15 255 283 7	0 530 487 750 1 499 431 13 2 427 400 224
20 314 305 500 20 152 150 500 31 00 100 250	7 383 339 250 0 616 661 0 9 300 320 220 10 317 201 0	21 707 665 776 22 311 264 994 23 996 661 813 24 212 109 962	5 453 445 0 7 308 344 0 8 484 835 0 9 725 753 0	6 1176 1071 052 5 791 726 40 6 565 460 884 7 764 640 56	24 Jin 344 750 24 206 217 750 25 284 281 750 27 315 386 780	6 864 800 231 8 743 643 755 4 662 624 761 10 606 642 745	10 427 410 104 300 10 401 401 100 10 401 401 100	10 568 571 57 11 376 356 37 12 535 523 21 16 541 542 446	21 211 200 772 24 170 100 100 23 130 115 74 26 131 170 200	17 162 141 24 M-10.5	3 618 270 16 6 331 300 187 5 261 216 100 9 293 201 511
H.3.0 1 178 160 250 2 014 910 200	12 175 150 0 12 175 150 0	4.6.1 4.6.1	10 1143 1144 0 11 1004 441 0 12 1537 1553 0 14 1573 1520 0	8 324 207 100 9 701 609 61 10 769 709 996 11 634 602 136	~~1	12 364 368 VII 13 757 745 736 15 746 761 223 16 330 241 226	14 361 343 0 21 400 522 0 1 234 261 200 23 100 163 0	17 353 317 13 10 248 260 577 14 367 402 34	 	2 214 242 847 2 214 244 847 2 224 247 842 4 254 243 810 2 214 247 944	10 203 200 F12 11 350 374 965 12 276 275 762 13 364 363 667
3 688 628 250 6 1702 1767 500 5 602 518 230 8 1868 1950 500	1 672 667 750 3 331 321 750 4.0.1	1 1451 1067 767 2 402 363 224 3 1148 1217 752 4 195 250 789	10 444 603 0 14 322 306 500 21 348 426 500 23 234 202 500	13 424 403 769 14 424 452 402 15 256 256 884 16 683 701 474	• 1 dee 1111 424 • 2 1040 1314 781 3 1341 1482 836 • 1240 1367 882	17 457 476 234 18 412 416 775 20 407 435 775 22 304 334 411	24 146 234 0 25 144 176 0 26 198 254 0 20 234 245 0	23 228 275 73 28 184 180 4 25 182 184 82	2 640 326 123 3 626 608 66 6 337 336 101 3 1044 1064 20	• 220 242 700 ? 252 251 4 • 235 247 263 * 239 267 22	15 Jul Jan 25 16 176 188 241 17 203 241 36
7 J43 351 250 8 1858 1574 500 4 514 681 250 10 1014 1050 500	2 150 3 1544 750 3 1607 1743 250 4 171 134 250	5 717 646 141 6 676 636 747 7 336 376 941 8 322 303 778	24 200 201 500 20 372 375 500 20 213 353 500 300 141 220 500	17 100 240 477 10 304 307 443 14 349 300 477 21 314 341 445	5 1647 1822 809 6 1038 484 433 7 1447 1287 768 8 734 868 944	24 216 255 557 25 266 275 550 27 221 267 333	H=1+4 0 323 377 250	0 577 524 250 1 705 673 0	0 001 300 225 7 075 1000 11 0 724 003 011 7 737 728 070	10 163 235 146 11 173 207 66 14 136 150 122	
11 525 474 150 12 405 Jun 500 14 859 012 0 18 852 786 0	5 10 Je 1042 250 9 444 504 750 10 J53 203 750 11 1407 2003 750	0 201 200 011 10 201 200 011 11 1111 1030 750 13 1300 1177 755	***** 0 50 550 750	24 274 143 464 24 306 307 475 26 350 375 467 26 230 306 476	4 1000 1005 200 13 859 621 126 13 863 105 202 14 768 728 198	4.7.3 0 4.4 444 750	2 405 700 47 3 746 424 34 4 451 411 43	2 807 527 100 3 702 253 37 4 500 510 132 5 404 405 134	11 416 300 411 12 365 333 460 16 403 410 24	0 520 524 750 - 347 431 232	5 205 107 002 6 616 675 760 7 214 411 616 7 200 636 766
20 244 473 0 21 424 375 750 22 644 640 0 23 344 314 750	15 1572 1873 755 17 402 834 750 14 204 185 750 22 130 332 250	17 711 661 215 10 604 356 166 20 203 160 166 21 270 274 205	2 422 1034 47 3 1115 1114 115 4 1845 1041 36 5 1631 1307 140	H.7.2 0 208 320 750 1 470 465 84	13 516 644 621 16 546 537 643 17 636 576 747 18 636 680 941	2 406 417 741 3 716 622 630 4 340 .30 642 5 760 726 640	546 334 800 7 546 334 800 8 1001 305 561 9 673 663 600	7 305 304 224 * 445 446 424 * 286 246 257 10 550 440 867	16 427 422 46 17 426 431 53 16 367 355 154 19 475 567 17	5 187 144 220 7 171 214 755 9 128 173 808 10 147 210 792	
24 405 343 0 30 206 194 500 H.0.0	23 444 442 253 24 149 222 250 25 541 113 210 27 461 456 253	25 368 393 241 27 378 364 240 29 251 473 229	• 1801 1738 33 7 1075 1047 234 • 1549 1041 445 • 403 874 860	2 643 615 31 3 661 612 134 4 767 777 26 3 779 766 223	14 742 ct1 767 20 345 356 55 21 551 126 216 22 240 301 142	6 514 446 33 7 451 44, 761 8 499 473 47 9 480 567 167 10 667 400 17	10 005 72 003 11 041 005 033 12 430 467 024 13 666 374 005 14 69 454	14 471 505 410 13 457 466 464 14 466 433 754 15 323 354 4	20 .00 274 225 21 343 620 402 22 362 141 741 23 237 246 406		- 410 4/2 750 - 410 4/2 759 - 231 /62 776 - 144 186 225
0 1764 1400 0 2 1261 1330 3 3 354 328 230 4 444 722 0	31 186 198 250 31 186 198 250	444 474 474 474 474 474 474 474 474 474	10 1002 1370 407 11 1070 1015 421 12 100 734 412 13 775 704 457 14 363 137 204	• 455 434 5 7 731 641 237 • 411 657 484 4 620 600 803	13 423 404 154 24 87 301 181 25 24 242 111 26 274 275 205	11 342 304 140 12 636 347 184 13 361 286 62 14 472 404 432	13 347 220 20 16 300 356 155 17 571 536 75 18 510 400 51	17 242 264 24 18 256 267 62 19 203 221 173 20 215 208 667	HIJID HIJID 1 403 460 31	- 135 172 500 J 565 675 0 5 883 406 0 6 173 151 0 7 846 836 3	12 230 217 234 12 217 378 247 14 217 378 247
5 364 338 250 6 341 416 0 7 485 400 230 8 400 424 200	0 446 766 253 1 418 864 772 2 401 854 857 3 1187 1284 257	3 072 016 240 6 1122 1066 052 5 1061 1021 7.7 6 1067 1022 567	15 644 653 62 16 643 644 63 17 546 546 134 14 636 676 26	11 524 531 003 14 624 363 966 13 393 377 969 15 376 317 40		15 240 207 424 16 300 340 405 17 5,7 334 633 16 367 432 673	10 415 415 110 20 416 420 5 22 265 310 417 24 128 186 400	21 170 170 700 22 102 2.1 901 13 140 107 000 24 175 200 057	J 704 647 17 6 663 J40 480 5 274 621 21 6 674 366 466	• 333 301 0 • 7e5 7e6 0 10 337 333 0 11 574 515 0	2 134 184 122 3 166 114 67 4 226 252 136 5 248 255 55
4 353 242 250 10 1001 1047 300 11 335 230 250 12 1044 1222 300 14 1174 1247 300	4 1001 1866 () 5 1600 1633 .C. 6 666 668 63 7 1605 1717 223 6 1286 1313 105	0 1044 1034 744 0 741 743 464 4 962 736 733 10 674 612 982 11 669 348 224	10 546 510 75. 20 723 736 976 21 651 667 616 22 560 566 963 23 756 368 900	10 330 205 03 17 330 207 105 18 630 607 56 19 257 273 108 20 606 616 67	3 1/48 2051 300 8 447 638 200 6 1448 201 143	20 306 225 915 21 306 275 915 21 76 310 236 22 140 210 1	27 146 246 185	 2 433 574 744	- 545 517 433 4 602 326 488 10 673 611 667 11 734 742 493	12 370 350 0 10 203 735 0 15 331 220 500 16 206 231 0	• 44.5 200 225 7 221 249 26 • 100 -53 235

by means of the full-matrix least-squares program of Busing, Martin & Levy, adapted for the X-RAY 70 System (Stewart, 1970), a difference Fourier synthesis revealed all the nonhydrogen atoms.

The knowledge of the absolute configuration of the amine and the vinyl ether used (R and S respectively), allowed us to choose, between the two possible enantiomorphous arrangements of the atoms, the solution corresponding to the correct absolute configuration of the whole molecule.

Three subsequent least-squares refinement cycles of positional coordinates and isotropic thermal parameters of all the non-hydrogen atoms yielded an agreement index $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o| = 0.091$. Two more refinement cycles, in which anisotropic temperature factors in the form $\exp \{-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12}+2hl\beta_{13}+2kl\beta_{23})\}$ were introduced for platinum and chlorine atoms, reduced the R_1 value to 0.074.

During the later stages of refinements six reflexions (marked with an asterisk in Table 1) were excluded from further refinement because they are probably affected by secondary extinction.

Fig. 1. The molecular structure of *cis*-dichloro[(R)- α -methylbenzylamine] [(S)-1,2,2-trimethylpropyl (R)-vinyl ether]-platinum(II).

Moreover, while initially unit weights were assigned to all observed reflexions, at this point the following weighting scheme was introduced: $1/w = 1.0/(A + F_o + BF_o^2)$; following the suggestions of Cruickshank (Stewart, 1970) that the coefficients A and B can be conveniently chosen as $A = 2F_{\min}$ and $B = 2/F_{\max}$, we found most suitable for them the values A = 32.0, B = 0.005. A final analysis of the average $w|\Delta F|^2$ as a function of $|F_o|$ and $\sin \theta$ showed in fact a smooth distribution indicating the validity of the weighting scheme.

The final R values obtained were $R_1 = 0.069$ and $R_2 = [\sum w ||F_o| - |F_c||^2 / \sum w ||F_o|^2]^{1/2} = 0.089$. The shifts of the parameters in the last cycle were less than one tenth of the corresponding standard deviations.

The whole least-squares refinement process was performed without introduction of the hydrogen atoms. In a three-dimensional Fourier difference synthesis calculated at the end of the refinement only a few hydrogen atoms were in fact unequivocally located (among them the proton involved in an intramolecular hydrogen bond and some of those bonded to the carbons of the benzene ring), but for most of them the most reasonable positions were occupied by very smeared peaks or obscured by residual electron density from the heavier atoms.

The atomic scattering factors used in the structurefactor calculations were taken from *International Tables for X-ray Crystallography* (1962).

The observed and calculated structure factors are compared in Table 1. The final positional and thermal parameters are given in Table 2.

Description and discussion of the structure

The molecular structure of the examined diastereoisomer is illustrated in Fig. 1, which shows a projection of the molecule onto the ab plane. The chiral centre of the coordinated vinyl group appears to have an absolute configuration R, and then the diastereoisomer is defined as RRS.

Table 2. Positional and thermal parameters for the nonhydrogen atoms

Standard deviations are given in parentheses. Values of the anisotropic thermal parameters for platinum and chlorine atoms are respectively multiplied by 10⁵ and by 10⁴.

	x		у		Ζ	β_{11}	β_{22}	β	33	β_{12}		B13	1	β_{23}
Pt	0.0364	7 (4) 0.8	3667 (8)	0.2	8517 (14)	166 (1)	627 (5)	1823	(19)	23 (3)	1	5 (5)	1	1 (11)
CI(1)	0.0007	(3) 0.8	888 (6)	- 0·0	134 (10)	22 (1)	88 (5)	162	(15)	18 (2)		4 (3)	12	2 (8)
Cl(2)	-0.0455	(3) 0.7	832 (7)	0 ∙4	061 (11)	17 (1)	104 (6)	214	(18)	-5 (2)		3 (3)	1:	5 (8)
	x	y	Z		B (Å ²)		x		у		Z		B (Å	Ų)
C(1)	0.0729 (9)	0.6509 (24)	0.5770	(38)	3.82 (45)	C(10)	0.1009	(10)	0.9614	(23)	0.2399	(44)	4·3 7	(49)
$\tilde{C}(\tilde{2})$	0.0772(12)	0.6180 (29)	0.7955	(58)	5.68 (62)	C(11)	0.1147	(11)	1.1112	(25)	0.4995	(44)	4.42	(52)
Č(3)	0.1225(10)	0.6212(21)	0.4665	(40)	3.47 (43)	C(12)	0.0747	(17)	1.0847	(40)	0.6665	(73)	7.79	(95)
C(4)	0.1722(12)	0.6645 (31)	0.5230	(47)	5.31 (56)	C(13)	0.1631	(13)	1.1638	(35)	0.5637	(53)	6.08	(67)
$\hat{C}(5)$	0.2166 (14)	0.6300 (29)	0.4158	(55)	5.78 (72)	C(14)	0.1488	(14)	1.2889	(33)	0.6631	(58)	6.51	(80)
Č(6)	0.2115(14)	0.5586 (30)	0.2589	(57)	6.32 (72)	C(15)	0.1990	(22)	1.1727	(55)	0.3822	(95)	11.61	(1.58)
$\tilde{C}(\tilde{7})$	0.1624(13)	0.5148 (31)	0.2035	(59)	6.19 (67)	C(16)	0.1937	(22)	1.0898	3 (51)	0.7073	(100)	11.36	(1.53)
$\overline{C(8)}$	0.1178(11)	0.5466(24)	0.3010	(51)	4.79 (51)	N	0.0679	(9)	0.7809) (20)	0.5615	(36)	4.20	(43)
C(9)	0.1122(11)	0.8563(23)	0.1644	(40)	4.40 (52)	0	0.1258	(7)	0.9921	(16)	0.4099	(28)	3.98	(33)

Table 3. Bond distances (Å) with their standard deviations

Pt - Cl(1)	2.315 (7)	C(6)—C(7)	1.40 (5)
Pt - Cl(2)	2.332 (7)	C(7) - C(8)	1.37 (5)
PtC(9)	2.12 (3)	C(8) - C(3)	1.42 (4)
PtC(10)	2.20(3)	C(9) - C(10)	1.33 (4)
Pt—X*	2.05 (3)	C(10)-O	1.37 (3)
Pt—N	2.15 (2)	0 C(11)	1.51 (3)
N - C(1)	1.49 (4)	C(11) - C(12)	1.56 (5)
C(1) - C(2)	1.54 (5)	C(11) - C(13)	1.44 (5)
C(1) - C(3)	1.52 (4)	C(13) - C(14)	1.62 (6)
C(3) - C(4)	1.42 (4)	C(13) - C(15)	1.55 (7)
C(4) - C(5)	1.41 (5)	C(13) - C(16)	1.51 (7)
C(5) - C(6)	1.35 (5)		

* X defines the midpoint of the olefinic double bond.

Table 4. Bond angles with their standard deviations

Cl(1) - Pt Cl(2)	91°25 (16)'
Cl(1) - Pt - C(9)	89 26 (46)
Cl(1) - Pt - C(10)	90 23 (47)
$Cl(1) - Pt - X^*$	89 55 (49)
Cl(1) - Pt - N	177 26 (32)
Cl(2) - Pt - N	86 58 (38)
Cl(2) - Pt - C(9)	170 49 (44)
C(2) - Pt - C(10)	153 6 (43)
Cl(2) –Pt—X*	170 44 (48)
C(9) - Pt - C(10)	35 59 (60)
C(9)—Pt—N	91 50 (58)
C(10)-PtN	91 58 (58)
NX*	92 0 (59)
Pt - C(9) - C(10)	75 (1·ô°
Pt - C(10) - C(9)	69 (1.6)
C(9) - C(10) - O	117 (2.4)
C(10) - O - C(11)	119 (2)
$O_{}C(11) - C(12)$	104(2)
$O_{}C(11) - C(13)$	109 (2)
C(12) - C(11) - C(13)	115(3)
C(11) - C(13) - C(14)	107 (3)
$\mathbf{C}(11) - \mathbf{C}(13) - \mathbf{C}(15)$	107 (3)
C(1) - C(13) - C(16)	114 (3)
C(14) - C(13) - C(15)	114 (4)
C(15) - C(13) - C(16)	105 (4)
C(14) - C(13) - C(16)	109 (4)
N - C(1) - C(2)	108 (2)
N - C(1) - C(3)	105 (2)
C(2) - C(1) - C(3)	112 (2)
C(1) - C(3) - C(4)	122 (2)
$\vec{C}(1) - \vec{C}(3) - \vec{C}(8)$	117 (2)
C(3) - C(4) - C(5)	119 (3)
C(4) - C(5) - C(6)	120 (3)
C(5) - C(6) - C(7)	121 (3)
C(6) - C(7) - C(8)	121 (3)
C(7) - C(8) - C(3)	118 (3)
C(8) - C(3) - C(4)	120 (2)

* X defines the midpoint of the olefinic double bond.

The bond distances are reported both in Fig. 1 and in Table 3, while the bond angles are listed in Table 4; finally some selected least-squares planes and the angles between pairs of them are given in Table 5. These structural parameters were calculated respectively by means of the programs *BONDLA* and *LSQPL*; both of them are incorporated in the 'Crystal Structure Calculations System X-RAY 70' (Stewart, 1970).

The bond distances concerning the platinum atom agree well with similar data available in the literature (Alderman, Owston & Rowe; 1960, Benedetti, Corradini & Pedone, 1969; Spagna & Zambonelli, 1971; Merlino et al., 1971; Cotton, Francis, Frenz & Tsutsui, 1973); among such distances it is interesting to observe that our platinum-chlorine bond lengths are, within the error limits, nearly equal, unlike other Pt-olefin complexes in which the bonds *trans* to the olefin appear significantly longer than the *cis* ones. Such equality is well explained by observing that in our compound one Pt-Cl bond is *trans* to the olefin while the other is *trans* to a N-bonded amine; in fact, the influence of modest σ -donor ligands such as N-bonded amines is comparable with that of modest σ -donors which are also π -acceptors such as olefins, both of them giving rise to trans Pt-Cl bond lengths up to 2.33 Å (Hartley, 1973).

The various ligand-Pt-ligand angles are typical of an almost undistorted square-planar configuration of the platinum atom; the second least-squares plane listed in Table 5 confirms that the atoms Pt, Cl(1), Cl(2) and N really lie in the same plane, since their

Fig. 2. Projection of the crystal structure of *cis*-dichloro[(R)- α -methylbenzylamine] [(S)-1,2,2-trimethylpropyl (R)-vinyl ether]platinum(II) along [001].

Table 5. Parameters of some selected least-squares planes

The equation of the plane is in the form Ax + By + Cz = D, where x, y and z are fractional coordinates, calculated after Schomaker, Waser, Marsh & Bergman (1959).

Plane						
1	Atoms defining the plane C(3), C(4), C(5), C(6), C(7), C(8) Deviations: C(3), -0.007; C(4) 0	$ \begin{array}{r} A \\ -3.0185 \\ .003; C(5) -0. \end{array} $	<i>B</i> 9·0180 004; C(6) 0·0	C -4.0868 008; C(7) - 0	D 3·3323 0·012; C(8) 0·0	011; C(1) −0·041 Å
2	Atoms defining the plane Pt, Cl(1), Cl(2), N Deviations: Pt 0.026; Cl(1) -0.0 The acute angle between plane 2 :	A - 3.1270 13; Cl(2) 0.000 and plane 1 is 2	<i>B</i> 10·5863 ; N - 0·014; 56·80°.	C 2·3510 X* 0·376; C	$ \begin{array}{r} D \\ 9.3876 \\ (9) - 0.287; (9) (9) $	C(10) 1·039 Å
3	Atoms defining the plane Pt, N, C(1) The acute angles between plane 3	A 23.6463 and planes 1 a	<i>B</i> 0.5964 and 2 are 80.9	C - 2·5719 97 and 78·84	D 0.6279 ° respectively.	
4	Atoms defining the plane Pt, C(9), C(10) The acute angle between plane 4 a	A 10·3232 and plane 2 is 8	<i>B</i> - 3·1652 39·48°.	С 5·9605	D 0·5720	

* X defines the midpoint of the olefinic double bond.

mean deviation from the plane is only 0.013 Å. On the other hand the mid-point of the olefin C(9)-C(10)double bond deviates by as much as 0.38 Å from the plane. Such a value, apart from the dramatically greater deviation of 0.59 Å reported for PtCl(acac) ($H_2C=CHOH$) (where acac⁻ is the acetylacetonate anion), is the highest of a series of deviations reported by Cotton et al. (1973) for platinum(II) π -complexes. The plane defined by the C(9)-C(10) double bond and by the Pt atom lies practically perpendicular to the plane of the square of coordination (dihedral angle $89^{\circ}29'$); however, within the Pt, C(9), C(10) plane, the double bond appears slightly displaced ($6^{\circ}20'$) from the perpendicular to the coordination plane. Furthermore, Table 5 shows that the Pt, N, C(1) plane deviates from perpendicularity to the Pt, Cl(1), Cl(2), N plane (dihedral angle 78° 50').

All the other distances and angles, not involving the Pt atom, are acceptable within the limits of the large standard deviations in the positional parameters of the lighter atoms. The atoms of the benzene ring lie in a plane (mean deviation from the best plane 0.017 Å), which appears to be inclined toward the Pt atom $[C(3)\cdots Pt \text{ distance}=3.52 \text{ Å}]$ and contains also the C(1)-H bond. Finally the methyl group C(2) is in a quasi-*anti* position with respect to Pt.

Noteworthy is the presence of an intramolecular hydrogen bond between the nitrogen of the amine group and the oxygen atom, which can be inferred from the N···O distance as low as 3.00 Å. Such a bond is confirmed also by inspection of the ΔF map in which the proton involved in this bond is one of the few hydrogen atoms clearly visible; from its coordinates (x=0.0961, y=0.8321, z=0.5476) we calculated distances N-H=0.93 Å and H···O=2.18 Å and an angle N-H-O=146°29', which are in a good agreement with the values reported for the N-H···O bond by Hamilton & Ibers (1968).

There are no hydrogen bonds between different molecules. Since all the intermolecular contacts cor-

respond to distances greater than 3.50 Å (the shortest intermolecular distance, 3.55 Å, being that of the contact between C(1) and the symmetry-equivalent $[-x, y-\frac{1}{2}, \frac{1}{2}-z]$ of Cl(1)), we can conclude that the molecules of *cis*-dichloro[(*R*)- α -methylbenzylamine]-[(*S*)-1,2,2-trimethylpropyl (*R*)-vinyl ether]platinum(II) are held together only by van der Waals interactions.

A drawing of the molecular packing, as viewed along c, is given in Fig. 2.

This work was supported by the Consiglio Nazionale delle Ricerche, Roma. All the calculations were performed on the I.B.M. 360/67 computer of the Centro Nazionale Universitario di Calcolo Elettronico, Pisa.

References

ALBERTI, A. (1968). Period. Miner. 37, 595-612.

- ALBERTI, A. & GOTTARDI, G. (1966). Acta Cryst. 21, 833-834.
- ALDERMAN, P. R. H., OWSTON, P. G. & ROWE, J. M. (1960). Acta Cryst. 13, 149–155.
- BENEDETTI, E., CORRADINI, P. & PEDONE, C. (1969). J. Organomet. Chem. 18, 203-208.
- COTTON, F. A., FRANCIS, J. N., FRENZ, B. A. & TSUTSUI, M. (1973). J. Amer. Chem. Soc. 95, 2483-2486.
- HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen Bonding in Solids. New York, Amsterdam: Benjamin.
- HARTLEY, F. R. (1973). Chem. Soc. Rev. 2, 163-179.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- MATHIESON, A. MCL. (1956). Acta Cryst. 9, 317.
- MERLINO, S., LAZZARONI, R. & MONTAGNOLI, G. (1971). J. Organomet. Chem. 30, C93-C95.
- SARTORI, F., LEONI, L., LAZZARONI, R. & SALVADORI, P. (1974). Chem. Commun. pp. 322–323.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600–604.
- SPAGNA, R. & ZAMBONELLI, L. (1971). J. Chem. Soc. (A), pp. 2544–2549.
- STEWART, J. M. (1970). X-RAY 70 System for Crystallographic Computing. Comput. Sci. Center, Univ. of Maryland.